

A-LEVEL Mathematics

Pure Core 1 – MPC1 Mark scheme

6360 June 2015

Version/Stage: 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment		
	301011011	IVIAI K	Total	Comment		
(a)	$y = \pm \frac{3}{5}x + \dots$	M1		3 7		
				$y = -\frac{3}{5}x + \frac{7}{5}$ for guidance		
	(Gradient $AB =$) $-\frac{3}{5}$	A1	2			
(b)	Grad of perp = $\frac{5}{3}$ y+3= $\frac{5}{3}(x+2)$	M1		FT negative reciprocal of their (a)		
	$y+3=\frac{5}{3}(x+2)$	A1		any correct form with $$ simplified to $+$ eg $y = \frac{5}{3}x + c, c = \frac{1}{3}$		
	5x - 3y + 1 = 0	A1	3	3 3 integer coefficients with all terms on one side of equation & "=0"		
(c)	3x + 5y = 7 & $2x - 3y = 30$			correct equations used		
	eg $9x + 10x = 21 + 150$	M1		and correct elimination of x or y		
	C .			eg $19x = 171$ or $19y = -76$		
	$x = 9$ or $x = \frac{171}{19}$	A1		either <i>x</i> or <i>y</i> correct in any equivalent form		
	or $y = -4$ or $y = \frac{-76}{19}$					
	$x = 9 \qquad \text{and} \qquad y = -4$	A1	3	(9, -4) both written as integers		
	Total		8			
(a)		-	dient is st	ated.		
	Example $y = -\frac{3}{5}x + 7$ so grad $= -\frac{3}{5}$ scores M1 A1					
	NMS (grad $AB = 1 - \frac{3}{5}$ earns 2 marks. N	MS (grad	$AB =) \frac{3}{5}$	earns M1 A0 .		
	NMS Award M1 A0 only for "gradient = $-\frac{3}{5}x$ ".					
	May use two correct points eg (-1,2) and (-6,5) then $\frac{5-2}{-61}$ scores M1 (must be correct unsimplified)					
	with A1 for $-\frac{3}{5}$					
(b)	Condone $0 = 6y - 10x - 2$ etc for final A1, but not $3y - 5x = 1$ etc					
(c)	$2\left(\frac{7}{3}-\frac{5y}{3}\right)-3y=30$ earns M1 , however $2\left(\frac{7}{3}+\frac{5y}{3}\right)-3y=30$, for example, scores M0 . Accept any equivalent form for first A1 but must have $x = 9$ and $y = -4$ for final A1 .					
		must nave	л —) а п	$x y = \tau$ for final A1 .		

Q2	Solution	Mark	Total	Comment		
	$\frac{4\sqrt{5}-2\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}$	B1 M1		or $\frac{2\sqrt{3}-4\sqrt{5}}{\sqrt{3}-\sqrt{5}}$ multiplying top & bottom by conjugate of		
	$\sqrt{5} + \sqrt{3}$ (Numerator =) $20 + 4\sqrt{15} - 2\sqrt{15} - 6$	A1		their denominator $14 + 2\sqrt{15}$		
	(Denominator =) $\left(5 - \sqrt{5}\sqrt{3} + \sqrt{5}\sqrt{3} - 3 =\right)$ 2	B1		must be seen as denominator		
	(Gradient =) $7 + \sqrt{15}$	A1cso	5	$\frac{14+2\sqrt{15}}{2}$		
	Total		5			
	NO MISREADS ALLOWED IN THIS QUESTION Condone multiplication by $\sqrt{5} + \sqrt{3}$ instead of $\times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ for M1 only if subsequent working shows multiplication by both numerator and denominator – otherwise M0 Must have $\sqrt{15}$ and not just $\sqrt{3}\sqrt{5}$ for first A1 An error in the denominator such as $5 - \sqrt{8} + \sqrt{8} - 3 = 2$ should be given B0 and it would then automatically lose the final A1cso May use alternative conjugate $\times \frac{-\sqrt{5} - \sqrt{3}}{-\sqrt{5} - \sqrt{3}}$ M1; numerator = $-14 - 2\sqrt{15}$ A1 etc M1 is available if gradient expression is incorrect, provided it is a quotient of two surd expressions and the conjugate of their denominator is used. SC2 for $\frac{\sqrt{5} - \sqrt{3}}{4\sqrt{5} - 2\sqrt{3}} \times \frac{4\sqrt{5} + 2\sqrt{3}}{4\sqrt{5} + 2\sqrt{3}} = \frac{****}{68}$					

Q3	Solution	Mark	Total	Comment
69	Solution	Wark	Total	Comment
(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 4x^3 + 6x$	M1 A1		one term correct all correct (no +c etc)
	when $x = -1$, $\frac{dy}{dx} = -4 - 6 = -10$	m1		sub $x = -1$ correctly into "their" $\frac{dy}{dx}$ and evaluate correctly
	y - 6 = -10(x + 1)	A1cso	4	any correct form with $$ simplified to $+$ eg $y = -10x + c$, $c = -4$
(b)(i)	$\frac{x^5}{5} + \frac{3x^3}{3} + 2x$	M1 A1		two terms correct all correct (may have +c)
	F(2) - F(-1) $\left[\frac{32}{5} + 8 + 4\right] - \left[-\frac{1}{5} - 1 - 2\right]$	m1 A1		clear attempt to use correct limits correctly correct unsimplified must evaluate 2^5 ; $(-1)^3$ etc
	= 21.6	A1cso	5	$21\frac{3}{5}$; $\frac{108}{5}$ OE
(ii)	(Area of trapezium =) 54	B1		allow 18+36 or 90-36
	(Shaded area =) $54 - 21.6$	M1		Area of trapezium – <i>their</i> value from (b)(i)
	= 32.4	A1cso	3	$32\frac{2}{5}; \frac{162}{5}$ OE
	Total		12	
(b)(ii)	For M1 , allow subtraction of "their" trapezium area from their $ (\mathbf{b})(\mathbf{i})$ value . Candidates may use $\int_{-1}^{2} (8x+14) dx = [4x^2+14x]_{-1}^{2} = 16+28-4+14$ to earn B1 . If $\int_{-1}^{2} (ax+b) dx$ is used for any line $y = ax+b$ to find the area of trapezium, then candidates are normally eligible for M1 Candidates must find the area of a trapezium (and not a triangle) to earn M1			

Q4	Solution	Mark	Total	Comment		
Q4	301011011	IVIAI N	TOLAI	Comment		
(a)	$(x+1)^2 + (y-3)^2$	M1		one of these terms correct		
		A1		LHS correct with perhaps extra constant		
				terms		
	$(x+1)^2 + (y-3)^2 = 50$	A1	3			
(b)(i)	<i>C</i> (-1, 3)	B 1√	1	correct or FT from their equation in (a)		
(ii)		M1				
(")	$(r=)\sqrt{50}$	1411		correct or FT their \sqrt{RHS} provided <i>RHS</i> > 0		
	$=5\sqrt{2}$	A1	2			
	- 542					
(c)	$4^2 + k^2 + 2 \times 4 - 6k - 40 = 0$	M1		sub $x = 4$, correctly into given circle		
	or "their" $(4+1)^2 + (k-3)^2 = 50$			equation (or their circle equation)		
	$k^2 - 6k - 16(=0)$ or $(k-3)^2 = 25$	A1				
	k = -2, k = 8	A1	3			
(d)	$D^{2} + 1^{2} =$ " their r^{2} "	M1		Pythagoras used correctly with 1 and r		
	$D^2 = 50 - 1 = 49$					
	D = 30 - 1 - 49 (distance =) 7	A1	2	Do not accept $\sqrt{49}$ or ± 7		
				Do not accept $\sqrt{49}$ or ± 7		
	Total		11			
(a)	$(x-1)^{2} + (y-3)^{2} = (\sqrt{50})^{2}$ scores full marks.					
			a oprijor i	lines with extra terms atc as rough working		
	If final equation is correct then award 3 marks, treating earlier lines with extra terms etc as rough working. If final equation has sign errors then check to see if M1 is earned.					
	Example $(x+1)^2 + (y-3)^2 - 40 + 1 + 9 = 0$ earns M1 A1 but if this is part of preliminary working and					
	final equation is offered as $(x+1)^2 + (y-3)^2 = 50$ then award M1 A1 A1.					
	Example $(x-1)^2 + (y-3)^2 = 50$ earns M1 A0 ; Example $(x-1)^2 + (y+3)^2 = 50$ earns M0					
	$ = \frac{1}{2} + \frac$					
(b)(ii)	Candidates may still earn A1 here provided RHS of circle equation is 50.					
	Example $(x-1)^2 + (y+3)^2 = 50$ earns M0 in (a) but can then earn M1 A1 for radius = $\sqrt{50} = 5\sqrt{2}$					
	If no $\sqrt{50}$ seen; "(radius =) $5\sqrt{2}$ " scores SC2.					
(d)	NMS (distance=) 7 scores SC1 since no evidence that exact value of radius has been used.					
	A diagram with $\sqrt{50}$ or $5\sqrt{2}$ as hypotenuse and another side = 1 with answer = 7 scores SC2					
	A magram with $\sqrt{50}$ or $5\sqrt{2}$ as hypotenu	ise and an		z = 1 with answer $= 7$ scores SC2		

Q5	Solution	Mark	Total	Comment
(a)	$\left(x+\frac{3}{2}\right)^2$	M1		$(x+1.5)^2 \mathbf{OE}$
	$\left(x+\frac{3}{2}\right)^2-\frac{1}{4}$	A1	2	$(x+1.5)^2 - 0.25$ OE
(b) (i)	Vertex (-1.5, *) (**, -0.25)	B1√ B1√	2	strict FT "their" $-p$ strict FT "their" q Correct vertex is $(-1.5, -0.25)$
	x = -1.5	B1	1	correct equation in any form
(c)	$(x-2)^2 + 3(x-2)$ or $(x-2+"their"p)^2$	M1		replacing each x by $x-2$
	$y = (x-2)^2 + 3(x-2) + 2 + 4$ or $y = (x-0.5)^2 - 0.25 + 4$ OE	A1		any correct unsimplified form with $y = + 4$ or $y - 4 =$
	$y = x^2 - x + 4$	A1cso	3	
	Total		8	
(b)(i)	Accept coordinates written as $x = -1.5$, y	=-0.25	OE	

Q6	Solution	Mark	Total	Comment	
(a)(i)	$(SA =) \pi r^2 + 2\pi rh$	B1	Total	correct surface area	
	$\pi r^{2} + 2\pi rh = 48\pi$ $\Rightarrow 2rh = 48 - r^{2} \Rightarrow h = \dots$ $h = \frac{48 - r^{2}}{2r}$	M1 A1	3	equating "their" SA to 48π and attempt at $h =$ or $h = \frac{24}{r} - \frac{r}{2}$ OE	
(ii)	$V = \pi r^2 h = \dots$ $= \pi f(r)$	M1		correct volume expression & elimination of h using "their" (a)(i)	
	$V = \pi r^2 \left(\frac{48 - r^2}{2r}\right) = 24\pi r - \frac{\pi}{2}r^3$	A1	2	AG (be convinced)	
(b)(i)	$\left(\frac{\mathrm{d}V}{\mathrm{d}r}\right) = 24\pi - \frac{3}{2}\pi r^2$	M1 A1	2	one term correct all correct, must simplify r^0	
(ii)	$24\pi - \frac{3}{2}\pi r^2 = 0 \Longrightarrow r^2 = \frac{48\pi}{3\pi}$	M1		"their" $\frac{\mathrm{d}V}{\mathrm{d}r} = 0$ and attempt at $r^n = \dots$	
	<i>r</i> = 4	A1		from correct $\frac{\mathrm{d}V}{\mathrm{d}r}$	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -\frac{6\pi r}{2}$	B1 √		FT "their" $\frac{\mathrm{d}V}{\mathrm{d}r}$	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} < 0 \text{when } r = 4 \Longrightarrow \text{Maximum}$	A1cso	4	explained convincingly, all working and notation correct	
	Total		11		
(a)(i)	For M1, surface area must have two terms with at most one error in one of the terms. Eg $\pi r^2 + \pi rh = 48\pi \implies h =$ earns M1 It is not necessary to cancel π for A1				
(a)(ii)	May start again, eg using $2\pi rh = 48\pi - \pi r^2 \implies 2\pi r^2 h = 48\pi r - \pi r^3 \implies V = \dots$ etc for M1				
(b)(ii)	Award B1 for $\frac{d^2 V}{dr^2}$ FT "their" $\frac{dV}{dr}$ only if $\frac{dV}{dr} = a + br^2$, $a \neq 0, b \neq 0$				
	For A1cso candidate must use all notation correctly, have correct derivatives and reason correctly. Condone use of $\frac{d^2 y}{dx^2}$ etc instead of $\frac{d^2 V}{dr^2}$ for B1 \checkmark but not for A1cso.				
	May reason correctly using 2 values of r on either side of "their" $r = 4$ substituted into V or $\frac{dV}{dr}$ for B1				
	and if reasoning, working and notation are correct they may earn A1 cso.				

Q7	Solution	Mark	Total	Comment	
(a)	y † //	M1		cubic curve touching at O – one max, one min (may have minimum at O)	
		A1		shape roughly as shown crossing positive <i>x</i> -axis	
		A1	3	3 marked and correct curvature for $x < 0$ and $x > 3$	
(b)(i)	$p(4) = 4^{2}(4-3) + 20$ (Remainder) = 36	M1 A1	2	p(4) attempted or full long division as far as remainder term	
(ii)	$p(-2) = (-2)^2(-2-3) + 20$	M1		p(-2) attempted NOT long division	
	$=4 \times (-5) + 20 = 0$ or $-20 + 20 = 0$ therefore (x + 2) is a factor	A1	2	working showing that $p(-2) = 0$ and statement	
(iii)	$x^{2}+bx+c$ with $b = -5$ or $c = 10$ $(x+2)(x^{2}-5x+10)$	M1 A1	2	by inspection must see product	
(iv)	Discriminant of "their" quadratic = $(-5)^2 - 4 \times 10$	M1		be careful that cubic coefficients are not being used	
	-15 < 0 so quadratic has no real roots	A1cso			
	(only real root is) –2	B1	3	independent of previous marks	
	Total		12		
(a)	Award M1 for clear <i>intention</i> to touch at O Second A1 : allow curve becoming straight but withhold if wrong curvature in 1^{st} or 3^{rd} quadrants.				
(b) (i)	May expand cubic as $x^3 - 3x^2 + 20$ Do not apply ISW for eg " p(4) = 36, therefore remainder is - 36"				
(ii)	Minimum required for statement is "so factor" Powers of -2 must be evaluated: Example " $p(-2) = -8-12+20 = 0$ therefore factor" scores M1 A1 Statement may appear first : Example " $x+2$ is factor if $p(-2) = 0$ & $p(-2) = -8-12+20 = 0$ " scores M1 A1 However, Example " $p(-2) = (-2)^2(-2-3) + 20 = 0$ therefore $x+2$ is a factor" scores M1 A0				
(iii)	M1 may also be earned for a full long division attempt, or a clear attempt to find a value for both b and c (even though incorrect) by comparing coefficients.				
(iv)	Accept " $b^2 - 4ac = 25 - 40 < 0$ so no real roots" for M1 A1cso Discriminant may appear within the quadratic equation formula " $\sqrt{25 - 40}$ " for M1				

Q8	Solution	Mark	Total	Comment		
		marit	Total			
(a)	$x^2 + (3k - 4)x + 13 = 2x + k$					
	$x^{2} + (3k - 4)x + 13 = 2x + k$ $x^{2} + 3kx - 6x + 13 - k = 0$ $x^{2} + 3(k - 2)x + 13 - k = 0$			at least one step such as this line		
	$x^2 + 3(k-2)x + 13 - k = 0$	B1	1	AG (be convinced)		
(b) (i)	${3(k-2)}^2 - 4(13-k)$	M1		correct discriminant		
	${3(k-2)}^{2} - 4(13-k)$ $9(k^{2} - 4k + 4) - 52 + 4k$ < 0 $9k^{2} - 32k - 16 < 0$	A1		correct and brackets expanded correctly		
	< 0			condition must appear before final answer		
	$9k^2 - 32k - 16 < 0$	A1cso	3	AG Penalise poor use of brackets here even if candidate recovers		
				even il candidate recovers		
(ii)	(9k+4)(k-4)	M1		correct factors or correct use of formula as		
				far as $\frac{32 \pm \sqrt{1600}}{18}$		
				18		
	CVs are $-\frac{4}{9}$ and 4	A1		condone equivalent fractions here		
	,					
	_+ _ +	M1		use of sign diagram or graph		
	$\begin{array}{c c} + & - & + \\ \hline - & \frac{4}{9} & 4 \\ \hline & - & \frac{4}{9} < k < 4 \end{array}$					
	9			-4/9 4		
	$-\frac{4}{9} < k < 4$	A1	4	fractions must be simplified for final mark		
	, , , , , , , , , , , , , , , , , , ,					
	Total		8			
	TOTAL		75			
(b)(i)	For M1 must be attempting to use $b^2 - 4ac$	but <i>conde</i>	one poor	use of brackets.		
(b)(ii)	For second M1 , if critical values are correct then sign diagram or sketch must be correct <i>with correct CVs</i>					
	marked.					
	However, if CVs are not correct then second <i>their CVs</i> MUST be marked on the diagram			for attempt at sketch or sign diagram but		
	<i>their CVs</i> MUST be marked on the diagram or sketch. Final A1 , inequality must have <i>k</i> and no other letter.					
	Final answer of $k < 4$ AND $k > -\frac{4}{9}$ (with or without working) scores 4 marks.					
	(A) $-\frac{4}{9} < x < 4$ (B) $k < 4$ OR $k > -\frac{4}{9}$ (C) $k < 4$, $k > -\frac{4}{9}$ (D) $-\frac{4}{9} \le k \le 4$					
	with or without working each score 3 marks (SC3)					
	Example NMS $\frac{4}{9} < k < 4$ scores M0 (since one CV is incorrect)					
	Example NMS $k < \frac{72}{18}$, $k < -\frac{8}{18}$ scores M1 A1 M0 (since both CVs are correct)					
	$18 \qquad 18 \qquad 18$					